CPU Made Without Silicon
Known for its core design IP that ends up in everything from IoT to smartphones to servers, Arm is now presenting that it has enabled one of its key microcontrollers in a new form factor: rather than using silicon as a base, the company has enabled a processor core in plastic. The technology has been in the works for almost a decade, but Arm has been waiting on the fabrication methods to create a fully working core. Now the company has something working in a tangible medium and the research has been published in Nature.
Creating a Plastic CPU
‘Plastic’ or flexible electronics have been with us for a long while, and usually involve large yet simple designs for electronics flow, or basic 8-bit adders, all the way up to displays. What we’re seeing now is something a little different – the key news as published today is that Arm, in association with PragmatIC, has produced a fully functional non-silicon version of one of Arm’s most popular microcontrollers, the M0.
This M0 core sits right at the bottom of Arm’s core product stack, however the minimalist design is a popular one for silicon processors due to its low die area and power requirements for simple microcontroller tasks. So while it won’t be powering your next big device any time soon, lots of integrated electronics that you own will likely already be relying on M0 cores for fundamental control tasks.
PlasticArm, as it is now called, recreates the M0 core in a flexible plastic medium. This is important in two factors – first, the ability to enable processors or microcontrollers in something other than silicon will allow some amount of programmability in packaging, clothing, medical bandages, and others. Paired with a particle sensor, for example, it might allow for food packaging to determine when what is inside is no longer fit for human consumption due to spoilage or contamination. The second factor is cost, with flexible processing at scale being orders of magnitude cheaper than equivalent silicon designs. To Arm’s credit, the new M0 design here is reported to be 12x more powerful than current state-of-the-art plastic compute designs.
Details on the Plastic M0
In Arm’s press release, the company states that the Plastic M0 design has 128 bytes of RAM and 456 bytes of ROM, while also supporting a 32-bit Arm microarchitecture.
Inside the research paper published at Nature, we get fine-grained details.
The processor is built with a polyimide substrate and is formed through thin-film metal-oxide transistors, such as IGZO TFTs. This means that this is still technically a photolithography process, using spin-coating and photoresist techniques, ending up with the processor having 13 material layers and 4 routable metal layers. However as TFT designs have been widespread since the use of IGZO displays, the cost of production is still quite low.
More: https://www.anandtech.com/show/16837/plasticarm-get-your-next-cpu-without-silicon
FiveWordsForTheFuture - Aug 24, 2022 | Computing, Information Technology, New Materials, Plastic
Tagged | CPU, microelectronics, microprocessors, plastic, processor